

### Validation, Verification and Implementation of SHM at Airbus

#### **IWSHM 2013, Stanford, USA**

**Presented by** 

Dr. Clemens Bockenheimer / Leader SHM & ENDT, Head of A350 Testing, Surface, Standardisation Holger Speckmann / CEO Testia GmbH & SHM Airbus / IW Team



### Contents

### Scope of SHM

- SHM Development Targets & Solutions
- SHM Development Process
- SHM V&V Center

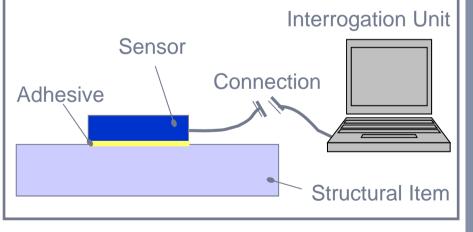
### Conclusion

© AIRBUS Operations GmbH. All rights reserved. Confidential and proprietary document.

Page 2

## Structural Health Monitoring (SHM)

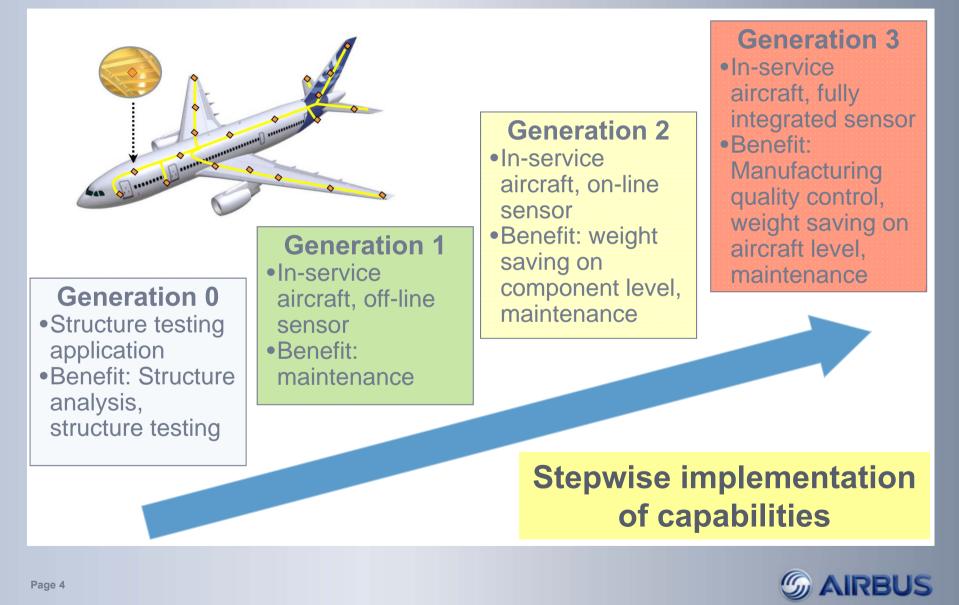
### Goals of SHM


- Reduce Maintenance Costs
- Increase Aircraft Availability
- Reduce Weight
- Quality Control

#### **Non-Destructive Testing (NDT)**






#### Structural Health Monitoring (SHM)

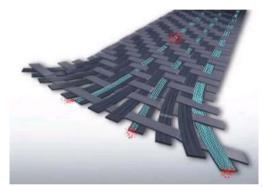


SHM = Onboard NDT of Defects, Damages, Stress, Conditions, Properties



### SHM Development & Application Roadmap




## Gen. 4: Multifunctional Smart Structures / Materials

- Load transfer
- Large damage capability
- Robustness
- Crashworthiness
- Morphing & adapting

## Self-sensing

- Self-healing
- Thermal insulation
- Noise attenuation
- Lightning strike protection
- Electrical isolation
- Vibration damping
- Electrical energy transport
- Signal transfer
- Cabin furnishing
- etc.

Multifunctional smart structures / materials various intrinsic functions offering new opportunities to reduce weight and costs.

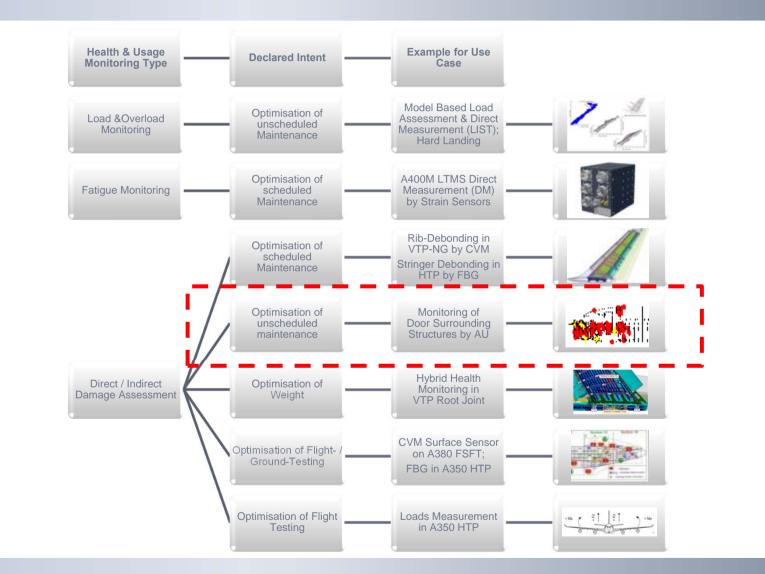


Load and power/signal transferring fibers

**Piezoelectric composite** 



### Contents


• Scope of SHM

### SHM Development Targets & Solutions

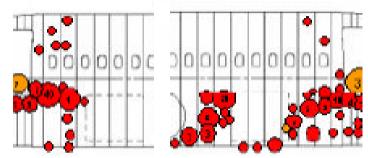
- SHM Development Process
- SHM V&V Center
- Conclusion



### **Overview on selected SHM Use Cases**






© AIRBUS Operations GmbH. All rights reserved. Confidential and proprietary document.

#### Page 7

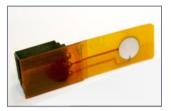
### **CFRP Impact Damage Detection & Assessment**

- Impact risk: runway debris, bird, hail, loader, tool,....
- NDT required after visual indication of CFRP impact
- Goal: Reduce cases where NDT inspection is required by means of SHM

# Increase Availability & Reduce Maintenance Costs



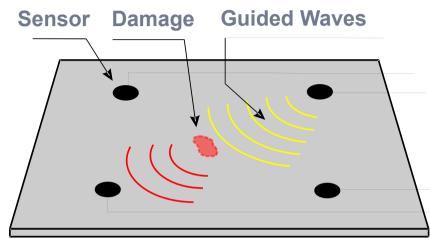





Impact Damage Outboard View

Impact Damage Onboard View



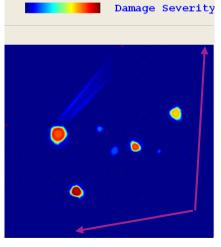

### **Debonding Detection by Acousto Ultrasonics**



SMART Layer™ Single Sensor



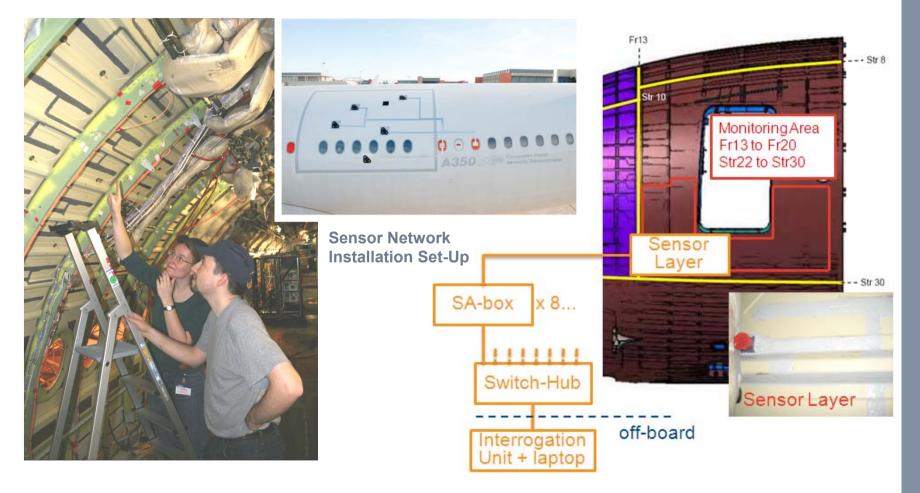
Prototype 1: CFRP Fuselage Shell Ground Validator




#### SCANGenie™ Interrogation Unit

#### **Acousto Ultrasonic Principle**

#### **Comparison NDT with SHM**








### **Impact Damage Detection & Assessment System**

#### Prototype 2 & 3: CFRP Fuselage Flight Test Validator on A340 MSN 1 & A350 MSN 1



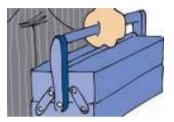


### Contents

- Scope of SHM
- SHM Development Targets & Solutions
- SHM Development Process
- SHM V&V Center

### Conclusion

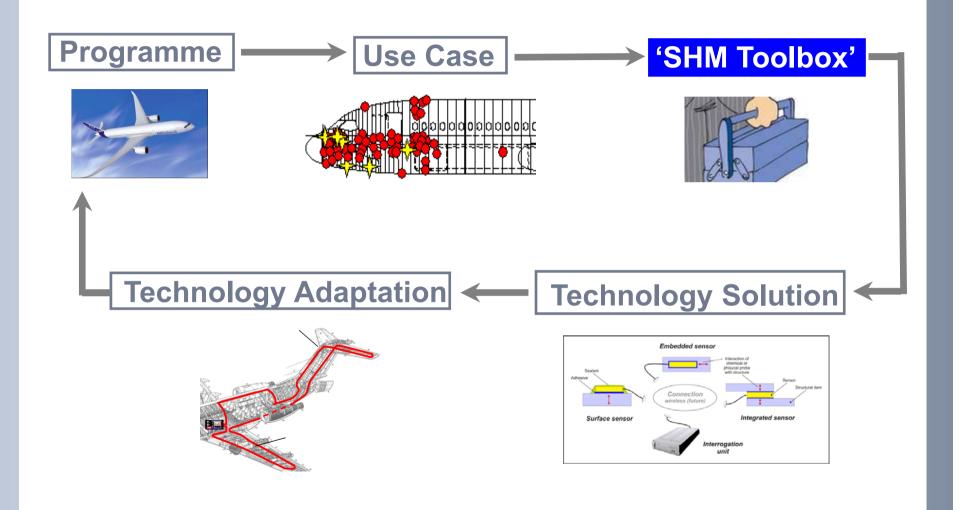
Page 11




### SHM Tool Box

#### **SHM Tool Box**

- Mature technical solutions for generic use cases
- Fall-Back Solution: Reduce technological risks for specific use case


| Generic Use Case<br>versus Technologies                  | CVM | ETFS | AE | Ē | CW | IDDC | UTFS | AU | FOS | EMI | CVM-TTT | SG | EDMS | OD |
|----------------------------------------------------------|-----|------|----|---|----|------|------|----|-----|-----|---------|----|------|----|
| 'Crack detection and assessment'                         |     |      |    | X |    |      |      |    |     |     |         |    |      |    |
| 'Rupture detection of structural elements'               |     |      |    | X | X  |      |      |    |     |     |         |    |      |    |
| 'Detection and assessment of impact events'              |     |      | Χ  |   |    | X    | Х    |    | Χ   |     |         |    |      |    |
| 'Delamination detection and assessment'                  |     |      | X  | X |    |      |      | Χ  | Χ   |     | X       |    |      |    |
| 'Bond quality assessment'                                |     |      |    |   |    |      |      |    | Χ   | X   | Χ       | X  |      |    |
| 'Bonded repair monitoring'                               |     |      |    |   |    |      |      |    | Χ   |     | X       | X  |      |    |
| 'Structural elements debonding detection and assessment' |     |      | X  |   |    |      |      | X  | Χ   |     | X       |    |      |    |
| 'Stress/strain monitoring in structural elements'        |     |      |    |   |    |      |      |    | Χ   |     |         | X  |      |    |
| 'Corrosion detection and assessment'                     |     |      |    |   |    |      |      |    |     |     |         |    | X    | X  |





September 2013

### SHM Way of Working





### SHM Development Guidance & Maturity Assessment

|   | Stage                                                                                     | TRL | TRL Definition                                                                        | Requirements &<br>Criteria                            | Status  |
|---|-------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------|-------------------------------------------------------|---------|
|   | Discover                                                                                  | 1   | System is only an idea on paper                                                       | TRL 1.1, TRL 1.2,                                     | yes/no  |
|   |                                                                                           | 2   | In depth formulation on equipment                                                     | TRL 2.1, TRL 2.2,                                     | yes/no  |
| U | Inderstand                                                                                | 3   | System partly a physical stage                                                        | TRL 3.1, TRL 3.2,                                     | yes/no  |
|   | Adapt                                                                                     | 4   | System at a laboratory stage                                                          | TRL 4.1, TRL 4.2,                                     | yes/no  |
|   |                                                                                           | 5   | System at a laboratory stage and compliant to aircraft environment                    | Requirement S                                         |         |
|   | Validate                                                                                  |     | System at a prototype stage and compliant to aircraft environment                     | <ul><li>Materials &amp; Pro</li><li>Systems</li></ul> | ocesses |
|   | Refine                                                                                    |     | System at a prototype stage tested in-flight                                          | Manufacturing                                         |         |
|   |                                                                                           | 8   | System in its final form, qualified through further ground-tests and in-flight trials | <ul><li>Customer Serve</li><li>Authorities</li></ul>  | /ice    |
|   | Use      9      System in its final form, further proven through extensive in-service use |     | TRL9.1, TRL 9.2,                                                                      | yes/no                                                |         |



are 12 Mar 201

### **SHM** Development Guideline

#### GAIRBUS TURITY AS

DEMENTS FOR ON BOARD NO OPLAN ESKW REFERENCE X45RP1040144

Requirements for on-Board NDT Sensor Technologies and their Maturity Assessment Tool

Technical Report

NT TOOL

| REFERENCE         | X45RP1040144 |
|-------------------|--------------|
| A/C APPLICABILITY | All          |
| ATA APPLICABILITY | 45           |
| CUSTOMER          |              |
| CONFIDENTIALITY   | Confidential |
| DOCUMENT LEVEL    | 3            |
|                   |              |

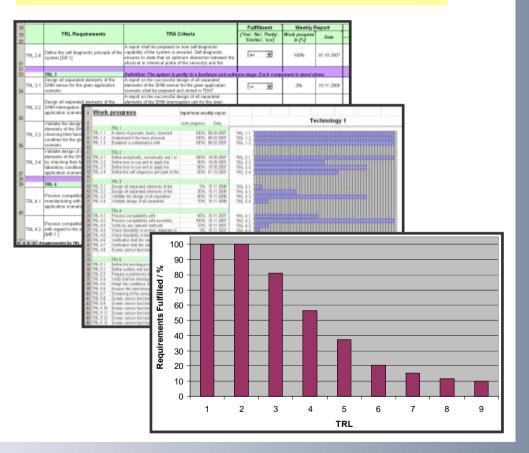
#### Purpose (short version)

Based on Lean Engineering, the approaches described in this document aim to reduce the costs and the time for the development of on-board NDT sensor technologies for any given application scenarios as well a to deliver mature technologies to the programmes. This document defines the requirements to guide the velopment and to assess maturity of on-board NDT sensor technologies for any given appli cenarios. Furthermore, a qualification procedure and a corresponding task tracking tool (TDAT rechnology Development Administration Tool) were introduced in order to perform the guided technology ment and maturity assessment in a systematic and objective manner

#### Scope (short version)

This document is relevant for people in charge of developing on-board NDT sensor technologies for ageing and new aircrafts, for retro-fit or forward-fit installation. The requirements given in this document shall be used as a guideline to identify, develop and adapt all on-board NDT sensor technologies for given applicable. enarios. Therefore the document providing the baseline requirements to be complemented by programm pecific requirements when applicable. However, the requirements proposed in this document are part of the alification process. The procedure and the corresponding tool for the technology development and maturity sessment introduced by this document is applicable to all on-board NDT sensor technologies and any kind of application scenario

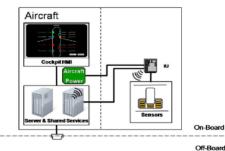
| REYWORDS          | Maturity assessment, durability, reliability, structural health |
|-------------------|-----------------------------------------------------------------|
|                   | monitoring, SHM, requirements, on-board NDT sensor              |
| RELATED DOCUMENTS |                                                                 |
|                   |                                                                 |


|               | NAME | SIGLUM - FUNCTION | DATE & SIGNATURE |
|---------------|------|-------------------|------------------|
| AUTHOR(S)     |      |                   |                  |
| APPROVAL      |      |                   |                  |
| AUTHORIZATION |      |                   |                  |
|               |      |                   |                  |

This document and all informs ind benin is the sole property of AIRBUS DEUTSCHLAND GebH. No intellectual property dpits are grasted by the delivery of this document or the deciceure of its context. In disclosed to a third party without the express written consect of AIRBUS CEUTSCHLAND GebH. The document and its context shall not be used for any purpose other than



Page 1 of 62


 Guided technology development Objective TRL assessment



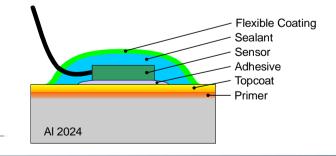


## **Major Requirement Families**

- Self-Diagnostic
- Detection Capability
- Durability
- Manufacturing & Assembly
- Maintainability, Reparability, Interchangeability
- Sensor Bonding Performance
- Sensor Installation
- Systems



Sensor


Adhesive

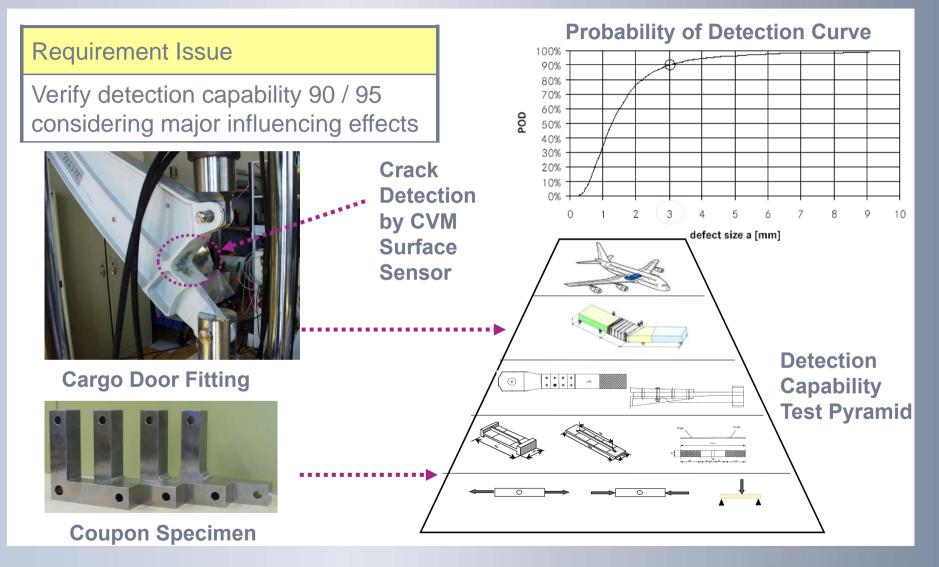
Connection

Structural Item

12

Interaction Probe / Material / structure

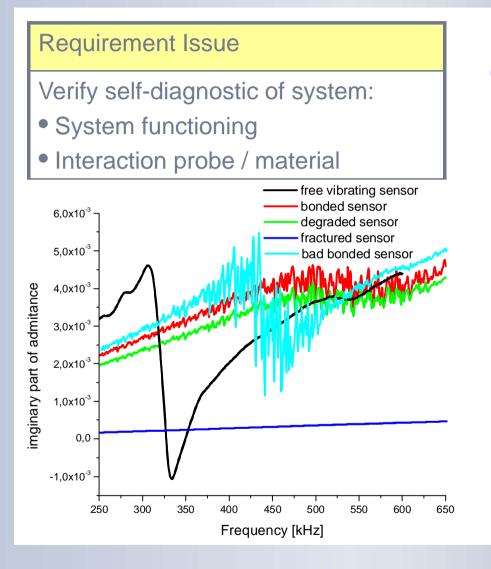


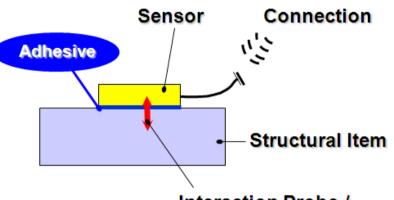

€ ::::

FKV-Komponente

Karnwarkstof




### **Detection Capability**






Page 17

### Self-Diagnostic

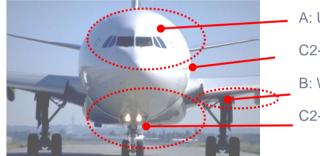




Interaction Probe / Material / structure

#### **Debonded AU Sensor**




Self-Diagnostic Acousto Ultrasonics: Electro-Mechanical Impedance



### Durability

#### **Requirement Issue**

Verify resistance to environmental in-service loading for  $\geq$  30 years



**Environmental Aircraft Areas** 

A: Upper fuselage

C2-1: Door frame area


B: Wing (fuel tank)

C2-2: Bilge

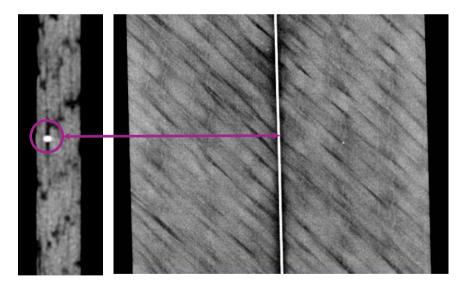
Flexible Coating

Sealant Sensor Adhesive Topcoat Primer

| Environmental Loading Types |                 |  |  |  |
|-----------------------------|-----------------|--|--|--|
| Temperature                 | Lubrication oil |  |  |  |
| Humidity                    | De-icing fluid  |  |  |  |
| Water                       | Toilet fluid    |  |  |  |
| Kerosene                    | Salt spray      |  |  |  |
| Hydraulic fluid             | Altitude        |  |  |  |

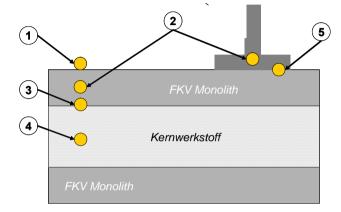


**Sensor Configuration for Area C Thermal Loading of Acousto Ultrasonic Sensors** 

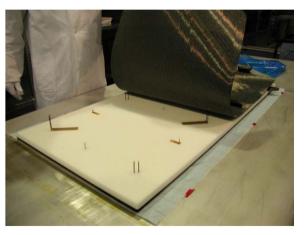



AI 2024

### Manufacturing & Assembly

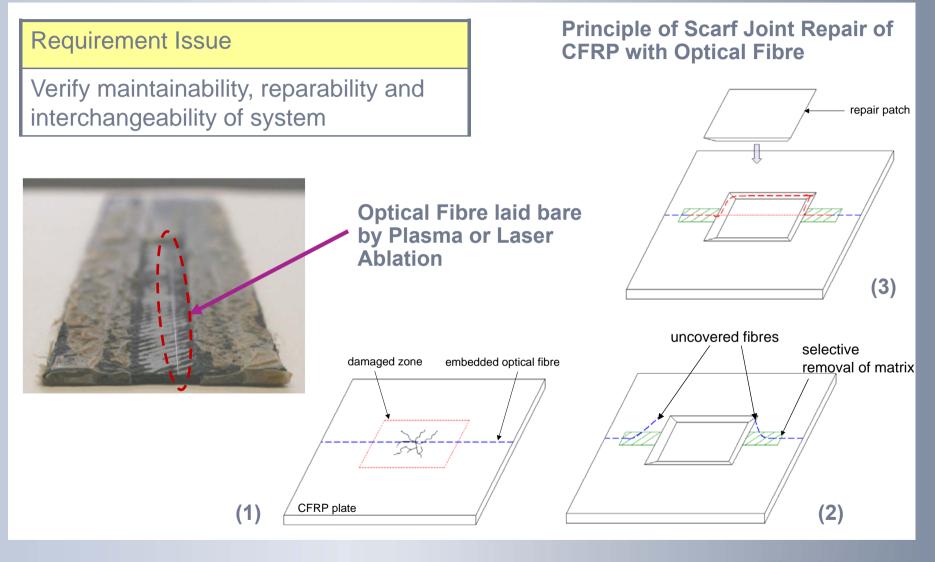

#### **Requirement Issue**

Verify sensor implementable during/after manufacturing. Verify material / structural performance unchanged or even better.




#### CFRP with Embedded 50 µm Optical Fibres

#### **Sensor Configurations CFRP Structure**




#### Lay-Up: CFRP Foam Core with Piezo Sensors

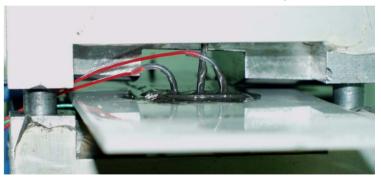




### Maintainability, Reparability, Interchangeability

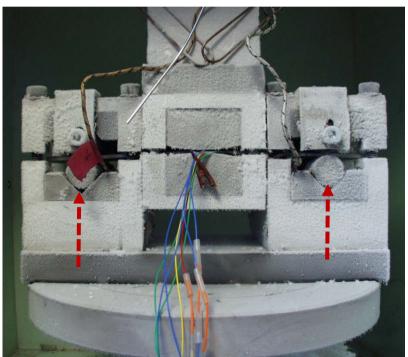





### **Sensor Bonding Performance**

#### **Requirement Issue**

Verify minimum bonding performance of sensor application for  $\geq$  30 years in-service




**CVM Sensor on metallic specimen** 



Specimen with sensor in Bending Device

Cyclic mechanical loading



**Climatic 4-Point Bending Test** 



### **Sensor Installation**

#### **Requirement Issue**

Verify robust sensor installation process.



**Surface Preparation** 





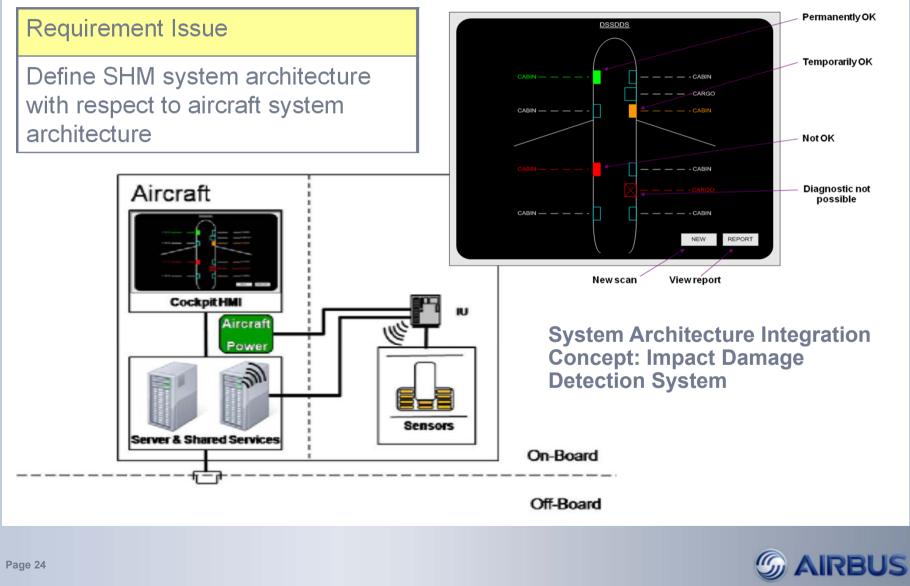
**Application Process of** 

Acousto Ultrasonic Sensors

in CFRP Fuselage Skin

#### **Sensor Application**




Sealant Application & Sensor Connection



Vacuum bagging



### Systems



### Contents

- Scope of SHM
- SHM Development Targets & Solutions
- SHM Development Process
- SHM V&V Center

### Conclusion



### **Basics for V&V: Standards**

|   | Standard                          | Focus                                                        | Organization                                                    |  |  |  |  |  |
|---|-----------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--|--|--|--|--|
| 1 | Overall V&V<br>Process            | Standardize worldwide<br>V&V approach                        | Worldwide Standardization<br>Organizations - WWSO<br>(e.g. SAE) |  |  |  |  |  |
| 2 | SHM Usage                         | Define usage of SHM for maintenance & design                 | Aerospace Regulators                                            |  |  |  |  |  |
| 3 | Sensor Quality                    | Establish Sensor Quality<br>Standards                        | WWSO (e.g. ISO)                                                 |  |  |  |  |  |
| 4 | Sensor application and protection | Establish and standardize installation processes for sensors | OEM                                                             |  |  |  |  |  |
| 5 | System integration                | Establish and standardize<br>system integration<br>processes | System Integrators                                              |  |  |  |  |  |
|   |                                   |                                                              |                                                                 |  |  |  |  |  |



## 1<sup>st</sup> – Overall V&V Approach: SHM Guidebook

# The overall V&V approach for Fixed Wing Aircraft is described in the SAE ARP6461

### **Guidelines for Implementation of SHM on Fixed Wing Aircraft**

#### Purpose of the guidelines:

- Provide guidance on the implementation of SHM in aircraft applications
- Provide information on structural maintenance practices and provide guidance on how SHM can be incorporated within or as modifications to current maintenance and airworthiness documents.
- Standardize and harmonize worldwide understanding about SHM (including terminology).
- Provide basic requirements to guide SHM technology development.
- Recommend certification matters that are relevant to SHM
- Describe the V&V process

### Published in September 2013 !



### 2<sup>nd</sup> - SHM Usage – Scheduled Maintenance

### Example: MSG 3

The term S-SHM is introduced as a new scheduled structure maintenance task level in MSG-3:

Scheduled SHM (S-SHM): S-SHM is the act to use/run/read out a SHM device at an interval set at a fixed schedule

SHM is distinguished from other structure maintenance:

Structure maintenance tasks are:

- •General Visual Inspection (GVI)
- •Detailed Inspection (DET)
- •Special Detailed Inspection (SDI)
- •Scheduled SHM (S-SHM)



September 2013

### **Next Standardization activities**

### Quality Standards for Sensors

- Essential Standard to ease Sensor system selection
- > Needed for major SHM sensor families
- Subject to Public Standard

### Sensor Application Standards

- Process Standardization to apply and protect Sensors
- Subject to OEM or public Standard

#### System Integration Standards

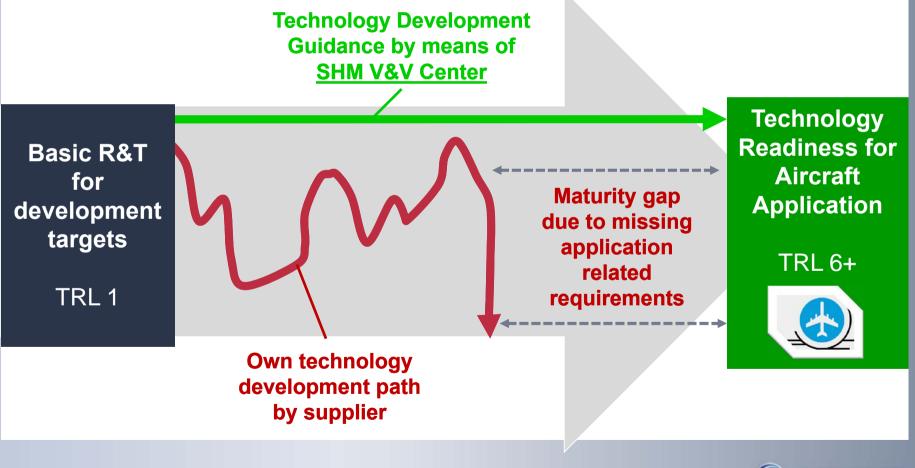
> Only needed if existing Standards do not cover the Integration

#### Missing / partial available

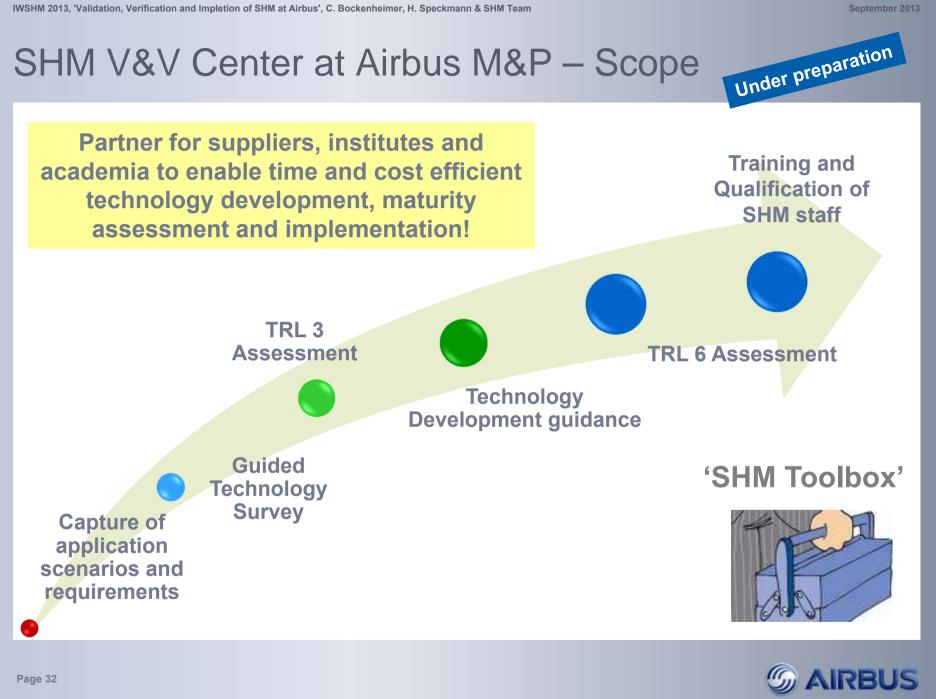
Missing / partial available

Pending




# But how will Standards and a Guided Technology Development be connected?




Page 30

### ...via a SHM V&V Center at Airbus M&P

State of the art: SHM technology development and maturity assessment is time and cost consuming!







# How will the approach be transferred into reality?

Page 33



### New EADS Company for NDT & SHM

EADS has founded a new company to provide all kind of NDT and SHM services



for

EADS Business Units (Airbus, Eurocopter, etc.)

- Suppliers to Airbus and other EADS BUs
- Airlines and MRO
- Institutes & Universities
- > NDT&SHM Equipment Manufacturer



### Testia & SHM

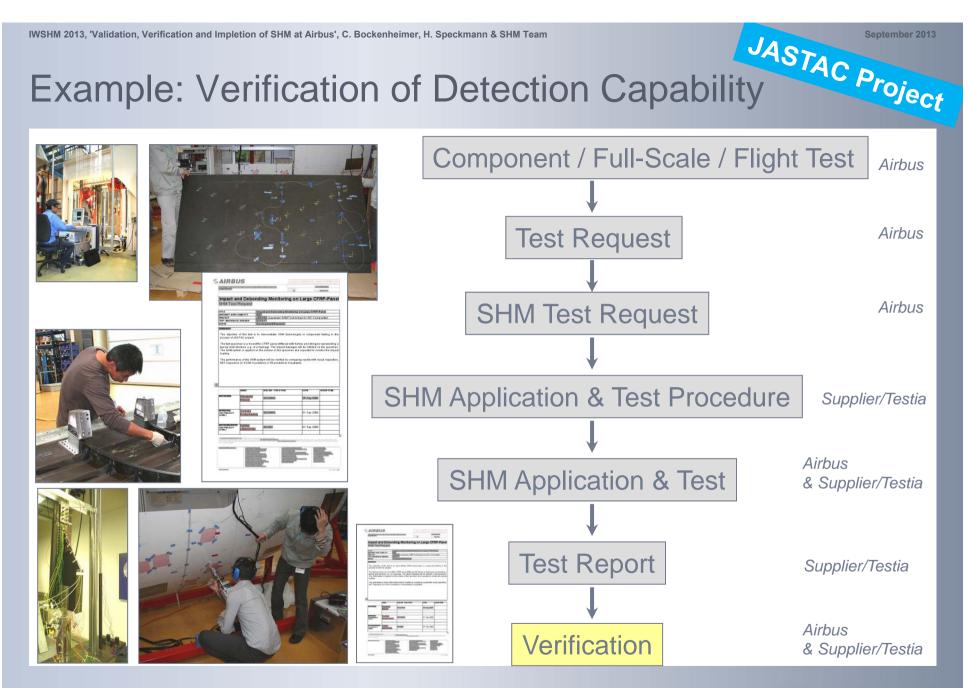


### Testia is a Service, Training & Solution Provider for SHM

- > Application & installation of sensors and systems
- Development of SHM solutions for Aerospace
  & other industries
- Training related to SHM
- Reseller and service company for SHM technologies
- Consultancy



### Testia & "SHM V&V"




# Testia will be a major partner to mature SHM technologies and applications

Testia intends to operate a Airbus SHM V&V Center

- Entrance point for Airbus V&V requests
- > Determine and validate the requirements for applications
- Enable system provider the maturation of their technology in accordance to Airbus and the SAE ARP-6461 (SHM Guidebook) requirements
- Involve worldwide partner to perform required verification tests







Page 37

### Contents

- Scope of SHM
- SHM Development Targets & Solutions
- SHM Development Process
- SHM V&V Center

### Conclusion



### Conclusion

- SHM is key enabler for best aircraft operability and revolutionary structure design and on its way to application.
- SHM development process and maturity assessment established to minimise development time and cost.
- Join our guided development network in order to realise SHM and deploy its benefits together !





© AIRBUS Operations GmbH. All rights reserved. Confidential and proprietary document. This document and all information contained herein is the sole property of AIRBUS Operations GmbH. No intellectual property rights are granted by the delivery of this document or the disclosure of its content. This document shall not be reproduced or disclosed to a third party without the express written consent of AIRBUS Operations GmbH. This document and its content shall not be used for any purpose other than that for which it is supplied. The statements made herein do not constitute an offer. They are based on the mentioned assumptions and are expressed in good faith. Where the supporting grounds for these statements are not shown, AIRBUS Operations GmbH will be pleased to explain the basis thereof. AIRBUS, its logo, A300, A310, A318, A319, A320, A321, A330, A340, A360, A400M are registered trademarks.

Page 40